mirror of
				https://github.com/Klipper3d/klipper.git
				synced 2025-10-31 02:15:52 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python
 | |
| # Script to graph motion results
 | |
| #
 | |
| # Copyright (C) 2019-2021  Kevin O'Connor <kevin@koconnor.net>
 | |
| # Copyright (C) 2020  Dmitry Butyugin <dmbutyugin@google.com>
 | |
| #
 | |
| # This file may be distributed under the terms of the GNU GPLv3 license.
 | |
| import optparse, datetime, math
 | |
| import matplotlib
 | |
| 
 | |
| SEG_TIME = .000100
 | |
| INV_SEG_TIME = 1. / SEG_TIME
 | |
| 
 | |
| SPRING_FREQ=35.0
 | |
| DAMPING_RATIO=0.05
 | |
| 
 | |
| CONFIG_FREQ=40.0
 | |
| CONFIG_DAMPING_RATIO=0.1
 | |
| 
 | |
| ######################################################################
 | |
| # Basic trapezoid motion
 | |
| ######################################################################
 | |
| 
 | |
| # List of moves: [(start_v, end_v, move_t), ...]
 | |
| Moves = [
 | |
|     (0., 0., .100),
 | |
|     (6.869, 89.443, None), (89.443, 89.443, .120), (89.443, 17.361, None),
 | |
|     (19.410, 120., None), (120., 120., .130), (120., 5., None),
 | |
|     (0., 0., 0.01),
 | |
|     (-5., -100., None), (-100., -100., .100), (-100., -.5, None),
 | |
|     (0., 0., .200)
 | |
| ]
 | |
| ACCEL = 3000.
 | |
| MAX_JERK = ACCEL * 0.6 * SPRING_FREQ
 | |
| 
 | |
| def get_accel(start_v, end_v):
 | |
|     return ACCEL
 | |
| 
 | |
| def get_accel_jerk_limit(start_v, end_v):
 | |
|     effective_accel = math.sqrt(MAX_JERK * abs(end_v - start_v) / 6.)
 | |
|     return min(effective_accel, ACCEL)
 | |
| 
 | |
| # Standard constant acceleration generator
 | |
| def get_acc_pos_ao2(rel_t, start_v, accel, move_t):
 | |
|     return (start_v + 0.5 * accel * rel_t) * rel_t
 | |
| 
 | |
| # Bezier curve "accel_order=4" generator
 | |
| def get_acc_pos_ao4(rel_t, start_v, accel, move_t):
 | |
|     inv_accel_t = 1. / move_t
 | |
|     accel_div_accel_t = accel * inv_accel_t
 | |
|     accel_div_accel_t2 = accel_div_accel_t * inv_accel_t
 | |
| 
 | |
|     c4 = -.5 * accel_div_accel_t2;
 | |
|     c3 = accel_div_accel_t;
 | |
|     c1 = start_v
 | |
|     return ((c4 * rel_t + c3) * rel_t * rel_t + c1) * rel_t
 | |
| 
 | |
| # Bezier curve "accel_order=6" generator
 | |
| def get_acc_pos_ao6(rel_t, start_v, accel, move_t):
 | |
|     inv_accel_t = 1. / move_t
 | |
|     accel_div_accel_t = accel * inv_accel_t
 | |
|     accel_div_accel_t2 = accel_div_accel_t * inv_accel_t
 | |
|     accel_div_accel_t3 = accel_div_accel_t2 * inv_accel_t
 | |
|     accel_div_accel_t4 = accel_div_accel_t3 * inv_accel_t
 | |
| 
 | |
|     c6 = accel_div_accel_t4;
 | |
|     c5 = -3. * accel_div_accel_t3;
 | |
|     c4 = 2.5 * accel_div_accel_t2;
 | |
|     c1 = start_v;
 | |
|     return (((c6 * rel_t + c5) * rel_t + c4)
 | |
|             * rel_t * rel_t * rel_t + c1) * rel_t
 | |
| 
 | |
| get_acc_pos = get_acc_pos_ao2
 | |
| get_acc = get_accel
 | |
| 
 | |
| # Calculate positions based on 'Moves' list
 | |
| def gen_positions():
 | |
|     out = []
 | |
|     start_d = start_t = t = 0.
 | |
|     for start_v, end_v, move_t in Moves:
 | |
|         if move_t is None:
 | |
|             move_t = abs(end_v - start_v) / get_acc(start_v, end_v)
 | |
|         accel = (end_v - start_v) / move_t
 | |
|         end_t = start_t + move_t
 | |
|         while t <= end_t:
 | |
|             rel_t = t - start_t
 | |
|             out.append(start_d + get_acc_pos(rel_t, start_v, accel, move_t))
 | |
|             t += SEG_TIME
 | |
|         start_d += get_acc_pos(move_t, start_v, accel, move_t)
 | |
|         start_t = end_t
 | |
|     return out
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Estimated motion with belt as spring
 | |
| ######################################################################
 | |
| 
 | |
| def estimate_spring(positions):
 | |
|     ang_freq2 = (SPRING_FREQ * 2. * math.pi)**2
 | |
|     damping_factor = 4. * math.pi * DAMPING_RATIO * SPRING_FREQ
 | |
|     head_pos = head_v = 0.
 | |
|     out = []
 | |
|     for stepper_pos in positions:
 | |
|         head_pos += head_v * SEG_TIME
 | |
|         head_a = (stepper_pos - head_pos) * ang_freq2
 | |
|         head_v += head_a * SEG_TIME
 | |
|         head_v -= head_v * damping_factor * SEG_TIME
 | |
|         out.append(head_pos)
 | |
|     return out
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # List helper functions
 | |
| ######################################################################
 | |
| 
 | |
| MARGIN_TIME = 0.050
 | |
| 
 | |
| def time_to_index(t):
 | |
|     return int(t * INV_SEG_TIME + .5)
 | |
| 
 | |
| def indexes(positions):
 | |
|     drop = time_to_index(MARGIN_TIME)
 | |
|     return range(drop, len(positions)-drop)
 | |
| 
 | |
| def trim_lists(*lists):
 | |
|     keep = len(lists[0]) - time_to_index(2. * MARGIN_TIME)
 | |
|     for l in lists:
 | |
|         del l[keep:]
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Common data filters
 | |
| ######################################################################
 | |
| 
 | |
| # Generate estimated first order derivative
 | |
| def gen_deriv(data):
 | |
|     return [0.] + [(data[i+1] - data[i]) * INV_SEG_TIME
 | |
|                    for i in range(len(data)-1)]
 | |
| 
 | |
| # Simple average between two points smooth_time away
 | |
| def calc_average(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         out[i] = .5 * (positions[i-offset] + positions[i+offset])
 | |
|     return out
 | |
| 
 | |
| # Average (via integration) of smooth_time range
 | |
| def calc_smooth(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     weight = 1. / (2*offset - 1)
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         out[i] = sum(positions[i-offset+1:i+offset]) * weight
 | |
|     return out
 | |
| 
 | |
| # Time weighted average (via integration) of smooth_time range
 | |
| def calc_weighted(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     weight = 1. / offset**2
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         weighted_data = [positions[j] * (offset - abs(j-i))
 | |
|                          for j in range(i-offset, i+offset)]
 | |
|         out[i] = sum(weighted_data) * weight
 | |
|     return out
 | |
| 
 | |
| # Weighted average (`h**2 - (t-T)**2`) of smooth_time range
 | |
| def calc_weighted2(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     weight = .75 / offset**3
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         weighted_data = [positions[j] * (offset**2 - (j-i)**2)
 | |
|                          for j in range(i-offset, i+offset)]
 | |
|         out[i] = sum(weighted_data) * weight
 | |
|     return out
 | |
| 
 | |
| # Weighted average (`(h**2 - (t-T)**2)**2`) of smooth_time range
 | |
| def calc_weighted4(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     weight = 15 / (16. * offset**5)
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         weighted_data = [positions[j] * ((offset**2 - (j-i)**2))**2
 | |
|                          for j in range(i-offset, i+offset)]
 | |
|         out[i] = sum(weighted_data) * weight
 | |
|     return out
 | |
| 
 | |
| # Weighted average (`(h - abs(t-T))**2 * (2 * abs(t-T) + h)`) of range
 | |
| def calc_weighted3(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .5)
 | |
|     weight = 1. / offset**4
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         weighted_data = [positions[j] * (offset - abs(j-i))**2
 | |
|                          * (2. * abs(j-i) + offset)
 | |
|                          for j in range(i-offset, i+offset)]
 | |
|         out[i] = sum(weighted_data) * weight
 | |
|     return out
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Spring motion estimation
 | |
| ######################################################################
 | |
| 
 | |
| def calc_spring_raw(positions):
 | |
|     sa = (INV_SEG_TIME / (CONFIG_FREQ * 2. * math.pi))**2
 | |
|     ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa)
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         out[i] = (positions[i]
 | |
|                   + sa * (positions[i-1] - 2.*positions[i] + positions[i+1])
 | |
|                   + ra * (positions[i+1] - positions[i]))
 | |
|     return out
 | |
| 
 | |
| def calc_spring_double_weighted(positions, smooth_time):
 | |
|     offset = time_to_index(smooth_time * .25)
 | |
|     sa = (INV_SEG_TIME / (offset * CONFIG_FREQ * 2. * math.pi))**2
 | |
|     ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa)
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         out[i] = (positions[i]
 | |
|                   + sa * (positions[i-offset] - 2.*positions[i]
 | |
|                           + positions[i+offset])
 | |
|                   + ra * (positions[i+1] - positions[i]))
 | |
|     return calc_weighted(out, smooth_time=.5 * smooth_time)
 | |
| 
 | |
| ######################################################################
 | |
| # Input shapers
 | |
| ######################################################################
 | |
| 
 | |
| def get_zv_shaper():
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
|     A = [1., K]
 | |
|     T = [0., .5*t_d]
 | |
|     return (A, T, "ZV")
 | |
| 
 | |
| def get_zvd_shaper():
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
|     A = [1., 2.*K, K**2]
 | |
|     T = [0., .5*t_d, t_d]
 | |
|     return (A, T, "ZVD")
 | |
| 
 | |
| def get_mzv_shaper():
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-.75 * CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
| 
 | |
|     a1 = 1. - 1. / math.sqrt(2.)
 | |
|     a2 = (math.sqrt(2.) - 1.) * K
 | |
|     a3 = a1 * K * K
 | |
| 
 | |
|     A = [a1, a2, a3]
 | |
|     T = [0., .375*t_d, .75*t_d]
 | |
|     return (A, T, "MZV")
 | |
| 
 | |
| def get_ei_shaper():
 | |
|     v_tol = 0.05 # vibration tolerance
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
| 
 | |
|     a1 = .25 * (1. + v_tol)
 | |
|     a2 = .5 * (1. - v_tol) * K
 | |
|     a3 = a1 * K * K
 | |
| 
 | |
|     A = [a1, a2, a3]
 | |
|     T = [0., .5*t_d, t_d]
 | |
|     return (A, T, "EI")
 | |
| 
 | |
| def get_2hump_ei_shaper():
 | |
|     v_tol = 0.05 # vibration tolerance
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
| 
 | |
|     V2 = v_tol**2
 | |
|     X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
 | |
|     a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
 | |
|     a2 = (.5 - a1) * K
 | |
|     a3 = a2 * K
 | |
|     a4 = a1 * K * K * K
 | |
| 
 | |
|     A = [a1, a2, a3, a4]
 | |
|     T = [0., .5*t_d, t_d, 1.5*t_d]
 | |
|     return (A, T, "2-hump EI")
 | |
| 
 | |
| def get_3hump_ei_shaper():
 | |
|     v_tol = 0.05 # vibration tolerance
 | |
|     df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
 | |
|     K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
 | |
|     t_d = 1. / (CONFIG_FREQ * df)
 | |
| 
 | |
|     K2 = K*K
 | |
|     a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
 | |
|     a2 = 0.25 * (1. - v_tol) * K
 | |
|     a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
 | |
|     a4 = a2 * K2
 | |
|     a5 = a1 * K2 * K2
 | |
| 
 | |
|     A = [a1, a2, a3, a4, a5]
 | |
|     T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
 | |
|     return (A, T, "3-hump EI")
 | |
| 
 | |
| 
 | |
| def shift_pulses(shaper):
 | |
|     A, T, name = shaper
 | |
|     n = len(T)
 | |
|     ts = (sum([A[i] * T[i] for i in range(n)])) / sum(A)
 | |
|     for i in range(n):
 | |
|         T[i] -= ts
 | |
| 
 | |
| def calc_shaper(shaper, positions):
 | |
|     shift_pulses(shaper)
 | |
|     A = shaper[0]
 | |
|     inv_D = 1. / sum(A)
 | |
|     n = len(A)
 | |
|     T = [time_to_index(-shaper[1][j]) for j in range(n)]
 | |
|     out = [0.] * len(positions)
 | |
|     for i in indexes(positions):
 | |
|         out[i] = sum([positions[i + T[j]] * A[j] for j in range(n)]) * inv_D
 | |
|     return out
 | |
| 
 | |
| # Ideal values
 | |
| SMOOTH_TIME = (2./3.) / CONFIG_FREQ
 | |
| 
 | |
| def gen_updated_position(positions):
 | |
|     #return calc_weighted(positions, 0.040)
 | |
|     #return calc_spring_double_weighted(positions, SMOOTH_TIME)
 | |
|     #return calc_weighted4(calc_spring_raw(positions), SMOOTH_TIME)
 | |
|     return calc_shaper(get_ei_shaper(), positions)
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Plotting and startup
 | |
| ######################################################################
 | |
| 
 | |
| def plot_motion():
 | |
|     # Nominal motion
 | |
|     positions = gen_positions()
 | |
|     velocities = gen_deriv(positions)
 | |
|     accels = gen_deriv(velocities)
 | |
|     # Updated motion
 | |
|     upd_positions = gen_updated_position(positions)
 | |
|     upd_velocities = gen_deriv(upd_positions)
 | |
|     upd_accels = gen_deriv(upd_velocities)
 | |
|     # Estimated position with model of belt as spring
 | |
|     spring_orig = estimate_spring(positions)
 | |
|     spring_upd = estimate_spring(upd_positions)
 | |
|     spring_diff_orig = [n-o for n, o in zip(spring_orig, positions)]
 | |
|     spring_diff_upd = [n-o for n, o in zip(spring_upd, positions)]
 | |
|     head_velocities = gen_deriv(spring_orig)
 | |
|     head_accels = gen_deriv(head_velocities)
 | |
|     head_upd_velocities = gen_deriv(spring_upd)
 | |
|     head_upd_accels = gen_deriv(head_upd_velocities)
 | |
|     # Build plot
 | |
|     times = [SEG_TIME * i for i in range(len(positions))]
 | |
|     trim_lists(times, velocities, accels,
 | |
|                upd_velocities, upd_velocities, upd_accels,
 | |
|                spring_diff_orig, spring_diff_upd,
 | |
|                head_velocities, head_upd_velocities,
 | |
|                head_accels, head_upd_accels)
 | |
|     fig, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(nrows=3, sharex=True)
 | |
|     ax1.set_title("Simulation: resonance freq=%.1f Hz, damping_ratio=%.3f,\n"
 | |
|                   "configured freq=%.1f Hz, damping_ratio = %.3f"
 | |
|                   % (SPRING_FREQ, DAMPING_RATIO, CONFIG_FREQ
 | |
|                       , CONFIG_DAMPING_RATIO))
 | |
|     ax1.set_ylabel('Velocity (mm/s)')
 | |
|     ax1.plot(times, upd_velocities, 'r', label='New Velocity', alpha=0.8)
 | |
|     ax1.plot(times, velocities, 'g', label='Nominal Velocity', alpha=0.8)
 | |
|     ax1.plot(times, head_velocities, label='Head Velocity', alpha=0.4)
 | |
|     ax1.plot(times, head_upd_velocities, label='New Head Velocity', alpha=0.4)
 | |
|     fontP = matplotlib.font_manager.FontProperties()
 | |
|     fontP.set_size('x-small')
 | |
|     ax1.legend(loc='best', prop=fontP)
 | |
|     ax1.grid(True)
 | |
|     ax2.set_ylabel('Acceleration (mm/s^2)')
 | |
|     ax2.plot(times, upd_accels, 'r', label='New Accel', alpha=0.8)
 | |
|     ax2.plot(times, accels, 'g', label='Nominal Accel', alpha=0.8)
 | |
|     ax2.plot(times, head_accels, alpha=0.4)
 | |
|     ax2.plot(times, head_upd_accels, alpha=0.4)
 | |
|     ax2.set_ylim([-5. * ACCEL, 5. * ACCEL])
 | |
|     ax2.legend(loc='best', prop=fontP)
 | |
|     ax2.grid(True)
 | |
|     ax3.set_ylabel('Deviation (mm)')
 | |
|     ax3.plot(times, spring_diff_upd, 'r', label='New', alpha=0.8)
 | |
|     ax3.plot(times, spring_diff_orig, 'g', label='Nominal', alpha=0.8)
 | |
|     ax3.grid(True)
 | |
|     ax3.legend(loc='best', prop=fontP)
 | |
|     ax3.set_xlabel('Time (s)')
 | |
|     return fig
 | |
| 
 | |
| def setup_matplotlib(output_to_file):
 | |
|     global matplotlib
 | |
|     if output_to_file:
 | |
|         matplotlib.use('Agg')
 | |
|     import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
 | |
|     import matplotlib.ticker
 | |
| 
 | |
| def main():
 | |
|     # Parse command-line arguments
 | |
|     usage = "%prog [options]"
 | |
|     opts = optparse.OptionParser(usage)
 | |
|     opts.add_option("-o", "--output", type="string", dest="output",
 | |
|                     default=None, help="filename of output graph")
 | |
|     options, args = opts.parse_args()
 | |
|     if len(args) != 0:
 | |
|         opts.error("Incorrect number of arguments")
 | |
| 
 | |
|     # Draw graph
 | |
|     setup_matplotlib(options.output is not None)
 | |
|     fig = plot_motion()
 | |
| 
 | |
|     # Show graph
 | |
|     if options.output is None:
 | |
|         matplotlib.pyplot.show()
 | |
|     else:
 | |
|         fig.set_size_inches(8, 6)
 | |
|         fig.savefig(options.output)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 |