fancier (but longer waiting time) messages

This commit is contained in:
perf3ct
2025-03-11 18:07:28 +00:00
parent 56fc720ac7
commit 4160db9728
4 changed files with 976 additions and 4 deletions

View File

@@ -4,6 +4,8 @@ import { OpenAIService } from './providers/openai_service.js';
import { AnthropicService } from './providers/anthropic_service.js';
import { OllamaService } from './providers/ollama_service.js';
import log from '../log.js';
import contextExtractor from './context_extractor.js';
import semanticContextService from './semantic_context_service.js';
type ServiceProviders = 'openai' | 'anthropic' | 'ollama';
@@ -159,6 +161,26 @@ export class AIServiceManager {
// If we get here, all providers failed
throw new Error(`All AI providers failed: ${lastError?.message || 'Unknown error'}`);
}
setupEventListeners() {
// Setup event listeners for AI services
}
/**
* Get the context extractor service
* @returns The context extractor instance
*/
getContextExtractor() {
return contextExtractor;
}
/**
* Get the semantic context service for advanced context handling
* @returns The semantic context service instance
*/
getSemanticContextService() {
return semanticContextService;
}
}
// Don't create singleton immediately, use a lazy-loading pattern
@@ -185,5 +207,12 @@ export default {
},
async generateChatCompletion(messages: Message[], options: ChatCompletionOptions = {}): Promise<ChatResponse> {
return getInstance().generateChatCompletion(messages, options);
},
// Add our new methods
getContextExtractor() {
return getInstance().getContextExtractor();
},
getSemanticContextService() {
return getInstance().getSemanticContextService();
}
};

View File

@@ -152,10 +152,28 @@ export class ChatService {
/**
* Add context from the current note to the chat
*
* @param sessionId - The ID of the chat session
* @param noteId - The ID of the note to add context from
* @param useSmartContext - Whether to use smart context extraction (default: true)
* @returns The updated chat session
*/
async addNoteContext(sessionId: string, noteId: string): Promise<ChatSession> {
async addNoteContext(sessionId: string, noteId: string, useSmartContext = true): Promise<ChatSession> {
const session = await this.getOrCreateSession(sessionId);
const context = await contextExtractor.getFullContext(noteId);
// Get the last user message to use as context for semantic search
const lastUserMessage = [...session.messages].reverse()
.find(msg => msg.role === 'user' && msg.content.length > 10)?.content || '';
let context;
if (useSmartContext && lastUserMessage) {
// Use smart context that considers the query for better relevance
context = await contextExtractor.getSmartContext(noteId, lastUserMessage);
} else {
// Fall back to full context if smart context is disabled or no query available
context = await contextExtractor.getFullContext(noteId);
}
const contextMessage: Message = {
role: 'user',
@@ -168,6 +186,61 @@ export class ChatService {
return session;
}
/**
* Add semantically relevant context from a note based on a specific query
*
* @param sessionId - The ID of the chat session
* @param noteId - The ID of the note to add context from
* @param query - The specific query to find relevant information for
* @returns The updated chat session
*/
async addSemanticNoteContext(sessionId: string, noteId: string, query: string): Promise<ChatSession> {
const session = await this.getOrCreateSession(sessionId);
// Use semantic context that considers the query for better relevance
const context = await contextExtractor.getSemanticContext(noteId, query);
const contextMessage: Message = {
role: 'user',
content: `Here is the relevant information from my notes based on my query "${query}":\n\n${context}\n\nPlease help me understand this information in relation to my query.`
};
session.messages.push(contextMessage);
await chatStorageService.updateChat(session.id, session.messages);
return session;
}
/**
* Send a context-aware message with automatically included semantic context from a note
* This method combines the query with relevant note context before sending to the AI
*
* @param sessionId - The ID of the chat session
* @param content - The user's message content
* @param noteId - The ID of the note to add context from
* @param options - Optional completion options
* @param streamCallback - Optional streaming callback
* @returns The updated chat session
*/
async sendContextAwareMessage(
sessionId: string,
content: string,
noteId: string,
options?: ChatCompletionOptions,
streamCallback?: (content: string, isDone: boolean) => void
): Promise<ChatSession> {
const session = await this.getOrCreateSession(sessionId);
// Get semantically relevant context based on the user's message
const context = await contextExtractor.getSmartContext(noteId, content);
// Combine the user's message with the relevant context
const enhancedContent = `${content}\n\nHere's relevant information from my notes that may help:\n\n${context}`;
// Send the enhanced message
return this.sendMessage(sessionId, enhancedContent, options, streamCallback);
}
/**
* Get all user's chat sessions
*/

View File

@@ -3,6 +3,7 @@ import sanitizeHtml from 'sanitize-html';
/**
* Utility class for extracting context from notes to provide to AI models
* Enhanced with advanced capabilities for handling large notes and specialized content
*/
export class ContextExtractor {
/**
@@ -24,6 +25,158 @@ export class ContextExtractor {
return this.formatNoteContent(note.content, note.type, note.mime, note.title);
}
/**
* Split a large note into smaller, semantically meaningful chunks
* This is useful for handling large notes that exceed the context window of LLMs
*
* @param noteId - The ID of the note to chunk
* @param maxChunkSize - Maximum size of each chunk in characters
* @returns Array of content chunks, or empty array if note not found
*/
async getChunkedNoteContent(noteId: string, maxChunkSize = 2000): Promise<string[]> {
const content = await this.getNoteContent(noteId);
if (!content) return [];
// Split into semantic chunks (paragraphs, sections, etc.)
return this.splitContentIntoChunks(content, maxChunkSize);
}
/**
* Split text content into semantically meaningful chunks based on natural boundaries
* like paragraphs, headings, and code blocks
*
* @param content - The text content to split
* @param maxChunkSize - Maximum size of each chunk in characters
* @returns Array of content chunks
*/
private splitContentIntoChunks(content: string, maxChunkSize: number): string[] {
// Look for semantic boundaries (headings, blank lines, etc.)
const headingPattern = /^(#+)\s+(.+)$/gm;
const codeBlockPattern = /```[\s\S]+?```/gm;
// Replace code blocks with placeholders to avoid splitting inside them
const codeBlocks: string[] = [];
let contentWithPlaceholders = content.replace(codeBlockPattern, (match) => {
const placeholder = `__CODE_BLOCK_${codeBlocks.length}__`;
codeBlocks.push(match);
return placeholder;
});
// Split content at headings and paragraphs
const sections: string[] = [];
let currentSection = '';
// First split by headings
const lines = contentWithPlaceholders.split('\n');
for (const line of lines) {
const isHeading = headingPattern.test(line);
headingPattern.lastIndex = 0; // Reset regex
// If this is a heading and we already have content, start a new section
if (isHeading && currentSection.trim().length > 0) {
sections.push(currentSection.trim());
currentSection = line;
} else {
currentSection += (currentSection ? '\n' : '') + line;
}
}
// Add the last section if there's any content
if (currentSection.trim().length > 0) {
sections.push(currentSection.trim());
}
// Now combine smaller sections to respect maxChunkSize
const chunks: string[] = [];
let currentChunk = '';
for (const section of sections) {
// If adding this section exceeds maxChunkSize and we already have content,
// finalize the current chunk and start a new one
if ((currentChunk + section).length > maxChunkSize && currentChunk.length > 0) {
chunks.push(currentChunk);
currentChunk = section;
} else {
currentChunk += (currentChunk ? '\n\n' : '') + section;
}
}
// Add the last chunk if there's any content
if (currentChunk.length > 0) {
chunks.push(currentChunk);
}
// Restore code blocks in all chunks
return chunks.map(chunk => {
return chunk.replace(/__CODE_BLOCK_(\d+)__/g, (_, index) => {
return codeBlocks[parseInt(index)];
});
});
}
/**
* Generate a summary of a note's content
* Useful for providing a condensed version of very large notes
*
* @param noteId - The ID of the note to summarize
* @param maxLength - Cut-off length to trigger summarization
* @returns Summary of the note or the original content if small enough
*/
async getNoteSummary(noteId: string, maxLength = 5000): Promise<string> {
const content = await this.getNoteContent(noteId);
if (!content || content.length < maxLength) return content || '';
// For larger content, generate a summary
return this.summarizeContent(content);
}
/**
* Summarize content by extracting key information
* This uses a heuristic approach to find important sentences and paragraphs
*
* @param content - The content to summarize
* @returns A summarized version of the content
*/
private summarizeContent(content: string): string {
// Extract title/heading if present
const titleMatch = content.match(/^# (.+)$/m);
const title = titleMatch ? titleMatch[1] : 'Untitled Note';
// Extract all headings for an outline
const headings: string[] = [];
const headingMatches = content.matchAll(/^(#+)\s+(.+)$/gm);
for (const match of headingMatches) {
const level = match[1].length;
const text = match[2];
headings.push(`${' '.repeat(level-1)}- ${text}`);
}
// Extract first sentence of each paragraph for a summary
const paragraphs = content.split(/\n\s*\n/);
const firstSentences = paragraphs
.filter(p => p.trim().length > 0 && !p.trim().startsWith('#') && !p.trim().startsWith('```'))
.map(p => {
const sentenceMatch = p.match(/^[^.!?]+[.!?]/);
return sentenceMatch ? sentenceMatch[0].trim() : p.substring(0, Math.min(150, p.length)).trim() + '...';
})
.slice(0, 5); // Limit to 5 sentences
// Create the summary
let summary = `# Summary of: ${title}\n\n`;
if (headings.length > 0) {
summary += `## Document Outline\n${headings.join('\n')}\n\n`;
}
if (firstSentences.length > 0) {
summary += `## Key Points\n${firstSentences.map(s => `- ${s}`).join('\n')}\n\n`;
}
summary += `(Note: This is an automatically generated summary of a larger document with ${content.length} characters)`;
return summary;
}
/**
* Get a set of parent notes to provide hierarchical context
*/
@@ -89,6 +242,7 @@ export class ContextExtractor {
/**
* Format the content of a note based on its type
* Enhanced with better handling for large and specialized content types
*/
private formatNoteContent(content: string, type: string, mime: string, title: string): string {
let formattedContent = `# ${title}\n\n`;
@@ -98,10 +252,19 @@ export class ContextExtractor {
// Remove HTML formatting for text notes
formattedContent += this.sanitizeHtml(content);
break;
case 'code':
// Format code notes with code blocks
formattedContent += '```\n' + content + '\n```';
// Improved code handling with language detection
const codeLanguage = this.detectCodeLanguage(content, mime);
// For large code files, extract structure rather than full content
if (content.length > 8000) {
formattedContent += this.extractCodeStructure(content, codeLanguage);
} else {
formattedContent += `\`\`\`${codeLanguage}\n${content}\n\`\`\``;
}
break;
case 'canvas':
if (mime === 'application/json') {
try {
@@ -249,6 +412,230 @@ export class ContextExtractor {
return formattedContent;
}
/**
* Detect the programming language of code content
*
* @param content - The code content to analyze
* @param mime - MIME type (if available)
* @returns The detected language or empty string
*/
private detectCodeLanguage(content: string, mime: string): string {
// First check if mime type provides a hint
if (mime) {
const mimeMap: Record<string, string> = {
'text/x-python': 'python',
'text/javascript': 'javascript',
'application/javascript': 'javascript',
'text/typescript': 'typescript',
'application/typescript': 'typescript',
'text/x-java': 'java',
'text/html': 'html',
'text/css': 'css',
'text/x-c': 'c',
'text/x-c++': 'cpp',
'text/x-csharp': 'csharp',
'text/x-go': 'go',
'text/x-ruby': 'ruby',
'text/x-php': 'php',
'text/x-swift': 'swift',
'text/x-rust': 'rust',
'text/markdown': 'markdown',
'text/x-sql': 'sql',
'text/x-yaml': 'yaml',
'application/json': 'json',
'text/x-shell': 'bash'
};
for (const [mimePattern, language] of Object.entries(mimeMap)) {
if (mime.includes(mimePattern)) {
return language;
}
}
}
// Check for common language patterns in the content
const firstLines = content.split('\n', 20).join('\n');
const languagePatterns: Record<string, RegExp> = {
'python': /^(import\s+|from\s+\w+\s+import|def\s+\w+\s*\(|class\s+\w+\s*:)/m,
'javascript': /^(const\s+\w+\s*=|let\s+\w+\s*=|var\s+\w+\s*=|function\s+\w+\s*\(|import\s+.*from\s+)/m,
'typescript': /^(interface\s+\w+|type\s+\w+\s*=|class\s+\w+\s*{)/m,
'html': /^<!DOCTYPE html>|<html>|<head>|<body>/m,
'css': /^(\.\w+\s*{|\#\w+\s*{|@media|@import)/m,
'java': /^(public\s+class|import\s+java|package\s+)/m,
'cpp': /^(#include\s+<\w+>|namespace\s+\w+|void\s+\w+\s*\()/m,
'csharp': /^(using\s+System|namespace\s+\w+|public\s+class)/m,
'go': /^(package\s+\w+|import\s+\(|func\s+\w+\s*\()/m,
'ruby': /^(require\s+|class\s+\w+\s*<|def\s+\w+)/m,
'php': /^(<\?php|namespace\s+\w+|use\s+\w+)/m,
'sql': /^(SELECT|INSERT|UPDATE|DELETE|CREATE TABLE|ALTER TABLE)/im,
'bash': /^(#!\/bin\/sh|#!\/bin\/bash|function\s+\w+\s*\(\))/m,
'markdown': /^(#\s+|##\s+|###\s+|\*\s+|-\s+|>\s+)/m,
'json': /^({[\s\n]*"|[\s\n]*\[)/m,
'yaml': /^(---|\w+:\s+)/m
};
for (const [language, pattern] of Object.entries(languagePatterns)) {
if (pattern.test(firstLines)) {
return language;
}
}
// Default to empty string if we can't detect the language
return '';
}
/**
* Extract the structure of a code file rather than its full content
* Useful for providing high-level understanding of large code files
*
* @param content - The full code content
* @param language - The programming language
* @returns A structured representation of the code
*/
private extractCodeStructure(content: string, language: string): string {
const lines = content.split('\n');
const maxLines = 8000;
// If it's not that much over the limit, just include the whole thing
if (lines.length <= maxLines * 1.2) {
return `\`\`\`${language}\n${content}\n\`\`\``;
}
// For large files, extract important structural elements based on language
let extractedStructure = '';
let importSection = '';
let classDefinitions = [];
let functionDefinitions = [];
let otherImportantLines = [];
// Extract imports/includes, class/function definitions based on language
if (['javascript', 'typescript', 'python', 'java', 'csharp'].includes(language)) {
// Find imports
for (let i = 0; i < Math.min(100, lines.length); i++) {
if (lines[i].match(/^(import|from|using|require|#include|package)\s+/)) {
importSection += lines[i] + '\n';
}
}
// Find class definitions
for (let i = 0; i < lines.length; i++) {
if (lines[i].match(/^(class|interface|type)\s+\w+/)) {
const endBracketLine = this.findMatchingEnd(lines, i, language);
if (endBracketLine > i && endBracketLine <= i + 10) {
// Include small class definitions entirely
classDefinitions.push(lines.slice(i, endBracketLine + 1).join('\n'));
i = endBracketLine;
} else {
// For larger classes, just show the definition and methods
let className = lines[i];
classDefinitions.push(className);
// Look for methods in this class
for (let j = i + 1; j < Math.min(endBracketLine, lines.length); j++) {
if (lines[j].match(/^\s+(function|def|public|private|protected)\s+\w+/)) {
classDefinitions.push(' ' + lines[j].trim());
}
}
if (endBracketLine > 0 && endBracketLine < lines.length) {
i = endBracketLine;
}
}
}
}
// Find function definitions not inside classes
for (let i = 0; i < lines.length; i++) {
if (lines[i].match(/^(function|def|const\s+\w+\s*=\s*\(|let\s+\w+\s*=\s*\(|var\s+\w+\s*=\s*\()/)) {
functionDefinitions.push(lines[i]);
}
}
}
// Build the extracted structure
extractedStructure += `# Code Structure (${lines.length} lines total)\n\n`;
if (importSection) {
extractedStructure += "## Imports/Dependencies\n```" + language + "\n" + importSection + "```\n\n";
}
if (classDefinitions.length > 0) {
extractedStructure += "## Classes/Interfaces\n```" + language + "\n" + classDefinitions.join('\n\n') + "\n```\n\n";
}
if (functionDefinitions.length > 0) {
extractedStructure += "## Functions\n```" + language + "\n" + functionDefinitions.join('\n\n') + "\n```\n\n";
}
// Add beginning and end of the file for context
extractedStructure += "## Beginning of File\n```" + language + "\n" +
lines.slice(0, Math.min(50, lines.length)).join('\n') + "\n```\n\n";
if (lines.length > 100) {
extractedStructure += "## End of File\n```" + language + "\n" +
lines.slice(Math.max(0, lines.length - 50)).join('\n') + "\n```\n\n";
}
return extractedStructure;
}
/**
* Find the line number of the matching ending bracket/block
*
* @param lines - Array of code lines
* @param startLine - Starting line number
* @param language - Programming language
* @returns The line number of the matching end, or -1 if not found
*/
private findMatchingEnd(lines: string[], startLine: number, language: string): number {
let depth = 0;
let inClass = false;
// Different languages have different ways to define blocks
if (['javascript', 'typescript', 'java', 'csharp', 'cpp'].includes(language)) {
// Curly brace languages
for (let i = startLine; i < lines.length; i++) {
const line = lines[i];
// Count opening braces
for (const char of line) {
if (char === '{') depth++;
if (char === '}') {
depth--;
if (depth === 0 && inClass) return i;
}
}
// Check if this line contains the class declaration
if (i === startLine && line.includes('{')) {
inClass = true;
} else if (i === startLine) {
// If the first line doesn't have an opening brace, look at the next few lines
if (i + 1 < lines.length && lines[i + 1].includes('{')) {
inClass = true;
}
}
}
} else if (language === 'python') {
// Indentation-based language
const baseIndentation = lines[startLine].match(/^\s*/)?.[0].length || 0;
for (let i = startLine + 1; i < lines.length; i++) {
// Skip empty lines
if (lines[i].trim() === '') continue;
const currentIndentation = lines[i].match(/^\s*/)?.[0].length || 0;
// If we're back to the same or lower indentation level, we've reached the end
if (currentIndentation <= baseIndentation) {
return i - 1;
}
}
}
return -1;
}
/**
* Sanitize HTML content to plain text
*/
@@ -328,6 +715,88 @@ export class ContextExtractor {
linkedContext
].filter(Boolean).join('\n\n');
}
/**
* Get semantically ranked context based on semantic similarity to a query
* This method delegates to the semantic context service for the actual ranking
*
* @param noteId - The ID of the current note
* @param query - The user's query to compare against
* @param maxResults - Maximum number of related notes to include
* @returns Context with the most semantically relevant related notes
*/
async getSemanticContext(noteId: string, query: string, maxResults = 5): Promise<string> {
try {
// This requires the semantic context service to be available
// We're using a dynamic import to avoid circular dependencies
const { default: aiServiceManager } = await import('./ai_service_manager.js');
const semanticContext = aiServiceManager.getInstance().getSemanticContextService();
if (!semanticContext) {
return this.getFullContext(noteId);
}
return await semanticContext.getSemanticContext(noteId, query, maxResults);
} catch (error) {
// Fall back to regular context if semantic ranking fails
console.error('Error in semantic context ranking:', error);
return this.getFullContext(noteId);
}
}
/**
* Get progressively loaded context based on depth level
* This provides different levels of context detail depending on the depth parameter
*
* @param noteId - The ID of the note to get context for
* @param depth - Depth level (1-4) determining how much context to include
* @returns Context appropriate for the requested depth
*/
async getProgressiveContext(noteId: string, depth = 1): Promise<string> {
try {
// This requires the semantic context service to be available
// We're using a dynamic import to avoid circular dependencies
const { default: aiServiceManager } = await import('./ai_service_manager.js');
const semanticContext = aiServiceManager.getInstance().getSemanticContextService();
if (!semanticContext) {
return this.getFullContext(noteId);
}
return await semanticContext.getProgressiveContext(noteId, depth);
} catch (error) {
// Fall back to regular context if progressive loading fails
console.error('Error in progressive context loading:', error);
return this.getFullContext(noteId);
}
}
/**
* Get smart context based on the query complexity
* This automatically selects the appropriate context depth and relevance
*
* @param noteId - The ID of the note to get context for
* @param query - The user's query for semantic relevance matching
* @returns The optimal context for answering the query
*/
async getSmartContext(noteId: string, query: string): Promise<string> {
try {
// This requires the semantic context service to be available
// We're using a dynamic import to avoid circular dependencies
const { default: aiServiceManager } = await import('./ai_service_manager.js');
const semanticContext = aiServiceManager.getInstance().getSemanticContextService();
if (!semanticContext) {
return this.getFullContext(noteId);
}
return await semanticContext.getSmartContext(noteId, query);
} catch (error) {
// Fall back to regular context if smart context fails
console.error('Error in smart context selection:', error);
return this.getFullContext(noteId);
}
}
}
// Singleton instance

View File

@@ -0,0 +1,401 @@
import contextExtractor from './context_extractor.js';
import * as vectorStore from './embeddings/vector_store.js';
import sql from '../sql.js';
import { cosineSimilarity } from './embeddings/vector_store.js';
import log from '../log.js';
import { getEmbeddingProvider, getEnabledEmbeddingProviders } from './embeddings/providers.js';
import options from '../options.js';
/**
* SEMANTIC CONTEXT SERVICE
*
* This service provides advanced context extraction capabilities for AI models.
* It enhances the basic context extractor with vector embedding-based semantic
* search and progressive context loading for large notes.
*
* === USAGE GUIDE ===
*
* 1. To use this service in other modules:
* ```
* import aiServiceManager from './services/llm/ai_service_manager.js';
* const semanticContext = aiServiceManager.getSemanticContextService();
* ```
*
* Or with the instance directly:
* ```
* import aiServiceManager from './services/llm/ai_service_manager.js';
* const semanticContext = aiServiceManager.getInstance().getSemanticContextService();
* ```
*
* 2. Retrieve context based on semantic relevance to a query:
* ```
* const context = await semanticContext.getSemanticContext(noteId, userQuery);
* ```
*
* 3. Load context progressively (only what's needed):
* ```
* const context = await semanticContext.getProgressiveContext(noteId, depth);
* // depth: 1=just note, 2=+parents, 3=+children, 4=+linked notes
* ```
*
* 4. Use smart context selection that adapts to query complexity:
* ```
* const context = await semanticContext.getSmartContext(noteId, userQuery);
* ```
*
* === REQUIREMENTS ===
*
* - Requires at least one configured embedding provider (OpenAI, Anthropic, Ollama)
* - Will fall back to non-semantic methods if no embedding provider is available
* - Uses OpenAI embeddings by default if API key is configured
*/
/**
* Provides advanced semantic context capabilities, enhancing the basic context extractor
* with vector embedding-based semantic search and progressive context loading.
*
* This service is especially useful for retrieving the most relevant context from large
* knowledge bases when working with limited-context LLMs.
*/
class SemanticContextService {
/**
* Get the preferred embedding provider based on user settings
* Tries to use the most appropriate provider in this order:
* 1. OpenAI if API key is set
* 2. Anthropic if API key is set
* 3. Ollama if configured
* 4. Any available provider
* 5. Local provider as fallback
*
* @returns The preferred embedding provider or null if none available
*/
private async getPreferredEmbeddingProvider(): Promise<any> {
// Try to get provider in order of preference
const openaiKey = await options.getOption('openaiApiKey');
if (openaiKey) {
const provider = await getEmbeddingProvider('openai');
if (provider) return provider;
}
const anthropicKey = await options.getOption('anthropicApiKey');
if (anthropicKey) {
const provider = await getEmbeddingProvider('anthropic');
if (provider) return provider;
}
// If neither of the preferred providers is available, get any provider
const providers = await getEnabledEmbeddingProviders();
if (providers.length > 0) {
return providers[0];
}
// Last resort is local provider
return await getEmbeddingProvider('local');
}
/**
* Generate embeddings for a text query
*
* @param query - The text query to embed
* @returns The generated embedding or null if failed
*/
private async generateQueryEmbedding(query: string): Promise<Float32Array | null> {
try {
// Get the preferred embedding provider
const provider = await this.getPreferredEmbeddingProvider();
if (!provider) {
return null;
}
return await provider.generateEmbeddings(query);
} catch (error) {
log.error(`Error generating query embedding: ${error}`);
return null;
}
}
/**
* Rank notes by semantic relevance to a query using vector similarity
*
* @param notes - Array of notes with noteId and title
* @param userQuery - The user's query to compare against
* @returns Sorted array of notes with relevance score
*/
async rankNotesByRelevance(
notes: Array<{noteId: string, title: string}>,
userQuery: string
): Promise<Array<{noteId: string, title: string, relevance: number}>> {
const queryEmbedding = await this.generateQueryEmbedding(userQuery);
if (!queryEmbedding) {
// If embedding fails, return notes in original order
return notes.map(note => ({ ...note, relevance: 0 }));
}
const provider = await this.getPreferredEmbeddingProvider();
if (!provider) {
return notes.map(note => ({ ...note, relevance: 0 }));
}
const rankedNotes = [];
for (const note of notes) {
// Get note embedding from vector store or generate it if not exists
let noteEmbedding = null;
try {
const embeddingResult = await vectorStore.getEmbeddingForNote(
note.noteId,
provider.name,
provider.getConfig().model || ''
);
if (embeddingResult) {
noteEmbedding = embeddingResult.embedding;
}
} catch (error) {
log.error(`Error retrieving embedding for note ${note.noteId}: ${error}`);
}
if (!noteEmbedding) {
// If note doesn't have an embedding yet, get content and generate one
const content = await contextExtractor.getNoteContent(note.noteId);
if (content && provider) {
try {
noteEmbedding = await provider.generateEmbeddings(content);
// Store the embedding for future use
await vectorStore.storeNoteEmbedding(
note.noteId,
provider.name,
provider.getConfig().model || '',
noteEmbedding
);
} catch (error) {
log.error(`Error generating embedding for note ${note.noteId}: ${error}`);
}
}
}
let relevance = 0;
if (noteEmbedding) {
// Calculate cosine similarity between query and note
relevance = cosineSimilarity(queryEmbedding, noteEmbedding);
}
rankedNotes.push({
...note,
relevance
});
}
// Sort by relevance (highest first)
return rankedNotes.sort((a, b) => b.relevance - a.relevance);
}
/**
* Retrieve semantic context based on relevance to user query
* Finds the most semantically similar notes to the user's query
*
* @param noteId - Base note ID to start the search from
* @param userQuery - Query to find relevant context for
* @param maxResults - Maximum number of notes to include in context
* @returns Formatted context with the most relevant notes
*/
async getSemanticContext(noteId: string, userQuery: string, maxResults = 5): Promise<string> {
// Get related notes (parents, children, linked notes)
const [
parentNotes,
childNotes,
linkedNotes
] = await Promise.all([
this.getParentNotes(noteId, 3),
this.getChildNotes(noteId, 10),
this.getLinkedNotes(noteId, 10)
]);
// Combine all related notes
const allRelatedNotes = [...parentNotes, ...childNotes, ...linkedNotes];
// If no related notes, return empty context
if (allRelatedNotes.length === 0) {
return '';
}
// Rank notes by relevance to query
const rankedNotes = await this.rankNotesByRelevance(allRelatedNotes, userQuery);
// Get content for the top N most relevant notes
const mostRelevantNotes = rankedNotes.slice(0, maxResults);
const relevantContent = await Promise.all(
mostRelevantNotes.map(async note => {
const content = await contextExtractor.getNoteContent(note.noteId);
if (!content) return null;
// Format with relevance score and title
return `### ${note.title} (Relevance: ${Math.round(note.relevance * 100)}%)\n\n${content}`;
})
);
// If no content retrieved, return empty string
if (!relevantContent.filter(Boolean).length) {
return '';
}
return `# Relevant Context\n\nThe following notes are most relevant to your query:\n\n${
relevantContent.filter(Boolean).join('\n\n---\n\n')
}`;
}
/**
* Load context progressively based on depth level
* This allows starting with minimal context and expanding as needed
*
* @param noteId - The ID of the note to get context for
* @param depth - Depth level (1-4) determining how much context to include
* @returns Context appropriate for the requested depth
*/
async getProgressiveContext(noteId: string, depth = 1): Promise<string> {
// Start with the note content
const noteContent = await contextExtractor.getNoteContent(noteId);
if (!noteContent) return 'Note not found';
// If depth is 1, just return the note content
if (depth <= 1) return noteContent;
// Add parent context for depth >= 2
const parentContext = await contextExtractor.getParentContext(noteId);
if (depth <= 2) return `${parentContext}\n\n${noteContent}`;
// Add child context for depth >= 3
const childContext = await contextExtractor.getChildContext(noteId);
if (depth <= 3) return `${parentContext}\n\n${noteContent}\n\n${childContext}`;
// Add linked notes for depth >= 4
const linkedContext = await contextExtractor.getLinkedNotesContext(noteId);
return `${parentContext}\n\n${noteContent}\n\n${childContext}\n\n${linkedContext}`;
}
/**
* Get parent notes in the hierarchy
* Helper method that queries the database directly
*/
private async getParentNotes(noteId: string, maxDepth: number): Promise<{noteId: string, title: string}[]> {
const parentNotes: {noteId: string, title: string}[] = [];
let currentNoteId = noteId;
for (let i = 0; i < maxDepth; i++) {
const parent = await sql.getRow<{parentNoteId: string, title: string}>(
`SELECT branches.parentNoteId, notes.title
FROM branches
JOIN notes ON branches.parentNoteId = notes.noteId
WHERE branches.noteId = ? AND branches.isDeleted = 0 LIMIT 1`,
[currentNoteId]
);
if (!parent || parent.parentNoteId === 'root') {
break;
}
parentNotes.unshift({
noteId: parent.parentNoteId,
title: parent.title
});
currentNoteId = parent.parentNoteId;
}
return parentNotes;
}
/**
* Get child notes
* Helper method that queries the database directly
*/
private async getChildNotes(noteId: string, maxChildren: number): Promise<{noteId: string, title: string}[]> {
return await sql.getRows<{noteId: string, title: string}>(
`SELECT noteId, title FROM notes
WHERE parentNoteId = ? AND isDeleted = 0
LIMIT ?`,
[noteId, maxChildren]
);
}
/**
* Get linked notes
* Helper method that queries the database directly
*/
private async getLinkedNotes(noteId: string, maxLinks: number): Promise<{noteId: string, title: string}[]> {
return await sql.getRows<{noteId: string, title: string}>(
`SELECT noteId, title FROM notes
WHERE noteId IN (
SELECT value FROM attributes
WHERE noteId = ? AND type = 'relation'
LIMIT ?
)`,
[noteId, maxLinks]
);
}
/**
* Smart context selection that combines semantic matching with progressive loading
* Returns the most appropriate context based on the query and available information
*
* @param noteId - The ID of the note to get context for
* @param userQuery - The user's query for semantic relevance matching
* @returns The optimal context for answering the query
*/
async getSmartContext(noteId: string, userQuery: string): Promise<string> {
// Check if embedding provider is available
const provider = await this.getPreferredEmbeddingProvider();
if (provider) {
try {
const semanticContext = await this.getSemanticContext(noteId, userQuery);
if (semanticContext) {
return semanticContext;
}
} catch (error) {
log.error(`Error getting semantic context: ${error}`);
// Fall back to progressive context if semantic fails
}
}
// Default to progressive context with appropriate depth based on query complexity
// Simple queries get less context, complex ones get more
const queryComplexity = this.estimateQueryComplexity(userQuery);
const depth = Math.min(4, Math.max(1, queryComplexity));
return this.getProgressiveContext(noteId, depth);
}
/**
* Estimate query complexity to determine appropriate context depth
*
* @param query - The user's query string
* @returns Complexity score from 1-4
*/
private estimateQueryComplexity(query: string): number {
if (!query) return 1;
// Simple heuristics for query complexity:
// 1. Length (longer queries tend to be more complex)
// 2. Number of questions or specific requests
// 3. Presence of complex terms/concepts
const words = query.split(/\s+/).length;
const questions = (query.match(/\?/g) || []).length;
const comparisons = (query.match(/compare|difference|versus|vs\.|between/gi) || []).length;
const complexity = (query.match(/explain|analyze|synthesize|evaluate|critique|recommend|suggest/gi) || []).length;
// Calculate complexity score
let score = 1;
if (words > 20) score += 1;
if (questions > 1) score += 1;
if (comparisons > 0) score += 1;
if (complexity > 0) score += 1;
return Math.min(4, score);
}
}
// Singleton instance
const semanticContextService = new SemanticContextService();
export default semanticContextService;