Files
klipper/scripts/graph_shaper.py
Dmitry Butyugin d825d43108 scripts: Updated graph_shaper.py script
The change removes the shapers defined there in favor of the
standard ones and makes the script a lot more configurable
via command-line arguments.

Signed-off-by: Dmitry Butyugin <dmbutyugin@google.com>
2025-10-04 13:07:49 -04:00

245 lines
8.9 KiB
Python
Executable File

#!/usr/bin/env python
# Script to plot input shapers
#
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import importlib, math, optparse, os, sys
import matplotlib
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'..', 'klippy'))
shaper_defs = importlib.import_module('.shaper_defs', 'extras')
# A set of damping ratios to calculate shaper response for
DEFAULT_DAMPING_RATIOS=[0.075, 0.1, 0.15]
# If set, defines which range of frequencies to plot shaper frequency response
PLOT_FREQ_RANGE = [] # If empty, will be automatically determined
#PLOT_FREQ_RANGE = [10., 100.]
PLOT_FREQ_STEP = .01
######################################################################
# Input shapers
######################################################################
def estimate_shaper(shaper, freq, damping_ratio):
A, T = shaper
n = len(T)
inv_D = 1. / sum(A)
omega = 2. * math.pi * freq
damping = damping_ratio * omega
omega_d = omega * math.sqrt(1. - damping_ratio**2)
S = C = 0
for i in range(n):
W = A[i] * math.exp(-damping * (T[-1] - T[i]))
S += W * math.sin(omega_d * T[i])
C += W * math.cos(omega_d * T[i])
return math.sqrt(S*S + C*C) * inv_D
def shift_pulses(shaper):
A, T = shaper
n = len(T)
ts = sum([A[i] * T[i] for i in range(n)]) / sum(A)
for i in range(n):
T[i] -= ts
# Shaper selection
def get_shaper(shaper_name, shaper_freq, damping_ratio):
for s in shaper_defs.INPUT_SHAPERS:
if shaper_name.lower() == s.name:
return s.init_func(shaper_freq, damping_ratio)
return shaper_defs.get_none_shaper()
######################################################################
# Plotting and startup
######################################################################
def bisect(func, left, right):
lhs_sign = math.copysign(1., func(left))
while right-left > 1e-8:
mid = .5 * (left + right)
val = func(mid)
if math.copysign(1., val) == lhs_sign:
left = mid
else:
right = mid
return .5 * (left + right)
def find_shaper_plot_range(shaper, shaper_freq, test_damping_ratios, vib_tol):
def eval_shaper(freq):
return estimate_shaper(shaper, freq, test_damping_ratios[0]) - vib_tol
if not PLOT_FREQ_RANGE:
left = bisect(eval_shaper, 0., shaper_freq)
right = bisect(eval_shaper, shaper_freq, 2.4 * shaper_freq)
else:
left, right = PLOT_FREQ_RANGE
return (left, right)
def gen_shaper_response(shaper, shaper_freq, test_damping_ratios):
# Calculate shaper vibration response on a range of frequencies
response = []
freqs = []
freq, freq_end = find_shaper_plot_range(shaper, shaper_freq,
test_damping_ratios, vib_tol=0.25)
while freq <= freq_end:
vals = []
for damping_ratio in test_damping_ratios:
vals.append(estimate_shaper(shaper, freq, damping_ratio))
response.append(vals)
freqs.append(freq)
freq += PLOT_FREQ_STEP
legend = ['damping ratio = %.3f' % d_r for d_r in test_damping_ratios]
return freqs, response, legend
def gen_shaped_step_function(shaper, shaper_freq,
system_freq, system_damping_ratio):
# Calculate shaping of a step function
A, T = shaper
inv_D = 1. / sum(A)
n = len(T)
omega = 2. * math.pi * system_freq
damping = system_damping_ratio * omega
omega_d = omega * math.sqrt(1. - system_damping_ratio**2)
phase = math.acos(system_damping_ratio)
t_start = T[0] - .5 / shaper_freq
t_end = T[-1] + 1.5 / system_freq
result = []
time = []
t = t_start
def step_response(t):
if t < 0.:
return 0.
return 1. - math.exp(-damping * t) * math.sin(omega_d * t
+ phase) / math.sin(phase)
while t <= t_end:
val = []
val.append(1. if t >= 0. else 0.)
#val.append(step_response(t))
commanded = 0.
response = 0.
S = C = 0
for i in range(n):
if t < T[i]:
continue
commanded += A[i]
response += A[i] * step_response(t - T[i])
val.append(commanded * inv_D)
val.append(response * inv_D)
result.append(val)
time.append(t)
t += .01 / shaper_freq
legend = ['step', 'shaper commanded', 'system response']
return time, result, legend
def plot_shaper(shaper_name, shaper_freq, damping_ratio, test_damping_ratios,
system_freq, system_damping_ratio):
shaper = get_shaper(shaper_name, shaper_freq, damping_ratio)
shift_pulses(shaper)
freqs, response, response_legend = gen_shaper_response(
shaper, shaper_freq, test_damping_ratios)
time, step_vals, step_legend = gen_shaped_step_function(
shaper, shaper_freq, system_freq, system_damping_ratio)
fig, (ax1, ax2) = matplotlib.pyplot.subplots(nrows=2, figsize=(10,9))
ax1.set_title("Vibration response simulation for shaper '%s',\n"
"shaper_freq=%.1f Hz, damping_ratio=%.3f"
% (shaper_name, shaper_freq, damping_ratio))
ax1.plot(freqs, response)
ax1.set_ylim(bottom=0.)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(response_legend, loc='best', prop=fontP)
ax1.set_xlabel('Resonance frequency, Hz')
ax1.set_ylabel('Remaining vibrations, ratio')
ax1.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax1.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax1.grid(which='major', color='grey')
ax1.grid(which='minor', color='lightgrey')
ax2.set_title("Unit step input, resonance frequency=%.1f Hz, "
"damping ratio=%.3f" % (system_freq, system_damping_ratio))
ax2.plot(time, step_vals)
ax2.legend(step_legend, loc='best', prop=fontP)
ax2.set_xlabel('Time, sec')
ax2.set_ylabel('Amplitude')
ax2.grid()
fig.tight_layout()
return fig
def setup_matplotlib(output_to_file):
global matplotlib
if output_to_file:
matplotlib.use('Agg')
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
def main():
# Parse command-line arguments
usage = "%prog [options]"
opts = optparse.OptionParser(usage)
opts.add_option("-o", "--output", type="string", dest="output",
default=None, help="filename of output graph")
opts.add_option("--shaper", type="string", dest="shaper", default="mzv",
help="a shaper to plot")
opts.add_option("--shaper_freq", type="float", dest="shaper_freq",
default=50.0, help="shaper frequency")
opts.add_option("--damping_ratio", type="float", dest="damping_ratio",
default=shaper_defs.DEFAULT_DAMPING_RATIO,
help="shaper damping_ratio parameter")
opts.add_option("--test_damping_ratios", type="string",
dest="test_damping_ratios",
default=",".join(["%.3f" % dr
for dr in DEFAULT_DAMPING_RATIOS]),
help="a comma-separated list of damping ratios to test " +
"input shaper for")
opts.add_option("--system_freq", type="float", dest="system_freq",
default=60.0,
help="natural frequency of a system for step simulation")
opts.add_option("--system_damping_ratio", type="float",
dest="system_damping_ratio", default=0.15,
help="damping_ratio of a system for step simulation")
options, args = opts.parse_args()
if len(args) != 0:
opts.error("Incorrect number of arguments")
if options.shaper.lower() not in [
s.name for s in shaper_defs.INPUT_SHAPERS]:
opts.error("Invalid --shaper=%s specified" % options.shaper)
if options.test_damping_ratios:
try:
test_damping_ratios = [float(s) for s in
options.test_damping_ratios.split(',')]
except ValueError:
opts.error("invalid floating point value in " +
"--test_damping_ratios param")
else:
test_damping_ratios = None
# Draw graph
setup_matplotlib(options.output is not None)
fig = plot_shaper(options.shaper, options.shaper_freq,
options.damping_ratio, test_damping_ratios,
options.system_freq, options.system_damping_ratio)
# Show graph
if options.output is None:
matplotlib.pyplot.show()
else:
fig.set_size_inches(8, 6)
fig.savefig(options.output)
if __name__ == '__main__':
main()