mirror of
				https://github.com/Klipper3d/klipper.git
				synced 2025-11-04 04:15:56 +01:00 
			
		
		
		
	Also updated instructions to install python3-numpy and python3-matplotlib Python packages. Signed-off-by: Dmitry Butyugin <dmbutyugin@google.com>
		
			
				
	
	
		
			175 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# Shaper auto-calibration script
 | 
						|
#
 | 
						|
# Copyright (C) 2020  Dmitry Butyugin <dmbutyugin@google.com>
 | 
						|
# Copyright (C) 2020  Kevin O'Connor <kevin@koconnor.net>
 | 
						|
#
 | 
						|
# This file may be distributed under the terms of the GNU GPLv3 license.
 | 
						|
from __future__ import print_function
 | 
						|
import importlib, optparse, os, sys
 | 
						|
from textwrap import wrap
 | 
						|
import numpy as np, matplotlib
 | 
						|
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)),
 | 
						|
                             '..', 'klippy'))
 | 
						|
shaper_calibrate = importlib.import_module('.shaper_calibrate', 'extras')
 | 
						|
 | 
						|
MAX_TITLE_LENGTH=65
 | 
						|
 | 
						|
def parse_log(logname):
 | 
						|
    with open(logname) as f:
 | 
						|
        for header in f:
 | 
						|
            if not header.startswith('#'):
 | 
						|
                break
 | 
						|
        if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'):
 | 
						|
            # Raw accelerometer data
 | 
						|
            return np.loadtxt(logname, comments='#', delimiter=',')
 | 
						|
    # Parse power spectral density data
 | 
						|
    data = np.loadtxt(logname, skiprows=1, comments='#', delimiter=',')
 | 
						|
    calibration_data = shaper_calibrate.CalibrationData(
 | 
						|
            freq_bins=data[:,0], psd_sum=data[:,4],
 | 
						|
            psd_x=data[:,1], psd_y=data[:,2], psd_z=data[:,3])
 | 
						|
    calibration_data.set_numpy(np)
 | 
						|
    # If input shapers are present in the CSV file, the frequency
 | 
						|
    # response is already normalized to input frequencies
 | 
						|
    if 'mzv' not in header:
 | 
						|
        calibration_data.normalize_to_frequencies()
 | 
						|
    return calibration_data
 | 
						|
 | 
						|
######################################################################
 | 
						|
# Shaper calibration
 | 
						|
######################################################################
 | 
						|
 | 
						|
# Find the best shaper parameters
 | 
						|
def calibrate_shaper(datas, csv_output, max_smoothing):
 | 
						|
    helper = shaper_calibrate.ShaperCalibrate(printer=None)
 | 
						|
    if isinstance(datas[0], shaper_calibrate.CalibrationData):
 | 
						|
        calibration_data = datas[0]
 | 
						|
        for data in datas[1:]:
 | 
						|
            calibration_data.add_data(data)
 | 
						|
    else:
 | 
						|
        # Process accelerometer data
 | 
						|
        calibration_data = helper.process_accelerometer_data(datas[0])
 | 
						|
        for data in datas[1:]:
 | 
						|
            calibration_data.add_data(helper.process_accelerometer_data(data))
 | 
						|
        calibration_data.normalize_to_frequencies()
 | 
						|
    shaper, all_shapers = helper.find_best_shaper(
 | 
						|
            calibration_data, max_smoothing, print)
 | 
						|
    print("Recommended shaper is %s @ %.1f Hz" % (shaper.name, shaper.freq))
 | 
						|
    if csv_output is not None:
 | 
						|
        helper.save_calibration_data(
 | 
						|
                csv_output, calibration_data, all_shapers)
 | 
						|
    return shaper.name, all_shapers, calibration_data
 | 
						|
 | 
						|
######################################################################
 | 
						|
# Plot frequency response and suggested input shapers
 | 
						|
######################################################################
 | 
						|
 | 
						|
def plot_freq_response(lognames, calibration_data, shapers,
 | 
						|
                       selected_shaper, max_freq):
 | 
						|
    freqs = calibration_data.freq_bins
 | 
						|
    psd = calibration_data.psd_sum[freqs <= max_freq]
 | 
						|
    px = calibration_data.psd_x[freqs <= max_freq]
 | 
						|
    py = calibration_data.psd_y[freqs <= max_freq]
 | 
						|
    pz = calibration_data.psd_z[freqs <= max_freq]
 | 
						|
    freqs = freqs[freqs <= max_freq]
 | 
						|
 | 
						|
    fontP = matplotlib.font_manager.FontProperties()
 | 
						|
    fontP.set_size('x-small')
 | 
						|
 | 
						|
    fig, ax = matplotlib.pyplot.subplots()
 | 
						|
    ax.set_xlabel('Frequency, Hz')
 | 
						|
    ax.set_xlim([0, max_freq])
 | 
						|
    ax.set_ylabel('Power spectral density')
 | 
						|
 | 
						|
    ax.plot(freqs, psd, label='X+Y+Z', color='purple')
 | 
						|
    ax.plot(freqs, px, label='X', color='red')
 | 
						|
    ax.plot(freqs, py, label='Y', color='green')
 | 
						|
    ax.plot(freqs, pz, label='Z', color='blue')
 | 
						|
 | 
						|
    title = "Frequency response and shapers (%s)" % (', '.join(lognames))
 | 
						|
    ax.set_title("\n".join(wrap(title, MAX_TITLE_LENGTH)))
 | 
						|
    ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(5))
 | 
						|
    ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
 | 
						|
    ax.ticklabel_format(axis='y', style='scientific', scilimits=(0,0))
 | 
						|
    ax.grid(which='major', color='grey')
 | 
						|
    ax.grid(which='minor', color='lightgrey')
 | 
						|
 | 
						|
    ax2 = ax.twinx()
 | 
						|
    ax2.set_ylabel('Shaper vibration reduction (ratio)')
 | 
						|
    best_shaper_vals = None
 | 
						|
    for shaper in shapers:
 | 
						|
        label = "%s (%.1f Hz, vibr=%.1f%%, sm~=%.2f, accel<=%.f)" % (
 | 
						|
                shaper.name.upper(), shaper.freq,
 | 
						|
                shaper.vibrs * 100., shaper.smoothing,
 | 
						|
                round(shaper.max_accel / 100.) * 100.)
 | 
						|
        linestyle = 'dotted'
 | 
						|
        if shaper.name == selected_shaper:
 | 
						|
            linestyle = 'dashdot'
 | 
						|
            best_shaper_vals = shaper.vals
 | 
						|
        ax2.plot(freqs, shaper.vals, label=label, linestyle=linestyle)
 | 
						|
    ax.plot(freqs, psd * best_shaper_vals,
 | 
						|
            label='After\nshaper', color='cyan')
 | 
						|
    # A hack to add a human-readable shaper recommendation to legend
 | 
						|
    ax2.plot([], [], ' ',
 | 
						|
             label="Recommended shaper: %s" % (selected_shaper.upper()))
 | 
						|
 | 
						|
    ax.legend(loc='upper left', prop=fontP)
 | 
						|
    ax2.legend(loc='upper right', prop=fontP)
 | 
						|
 | 
						|
    fig.tight_layout()
 | 
						|
    return fig
 | 
						|
 | 
						|
######################################################################
 | 
						|
# Startup
 | 
						|
######################################################################
 | 
						|
 | 
						|
def setup_matplotlib(output_to_file):
 | 
						|
    global matplotlib
 | 
						|
    if output_to_file:
 | 
						|
        matplotlib.rcParams.update({'figure.autolayout': True})
 | 
						|
        matplotlib.use('Agg')
 | 
						|
    import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
 | 
						|
    import matplotlib.ticker
 | 
						|
 | 
						|
def main():
 | 
						|
    # Parse command-line arguments
 | 
						|
    usage = "%prog [options] <logs>"
 | 
						|
    opts = optparse.OptionParser(usage)
 | 
						|
    opts.add_option("-o", "--output", type="string", dest="output",
 | 
						|
                    default=None, help="filename of output graph")
 | 
						|
    opts.add_option("-c", "--csv", type="string", dest="csv",
 | 
						|
                    default=None, help="filename of output csv file")
 | 
						|
    opts.add_option("-f", "--max_freq", type="float", default=200.,
 | 
						|
                    help="maximum frequency to graph")
 | 
						|
    opts.add_option("-s", "--max_smoothing", type="float", default=None,
 | 
						|
                    help="maximum shaper smoothing to allow")
 | 
						|
    options, args = opts.parse_args()
 | 
						|
    if len(args) < 1:
 | 
						|
        opts.error("Incorrect number of arguments")
 | 
						|
    if options.max_smoothing is not None and options.max_smoothing < 0.05:
 | 
						|
        opts.error("Too small max_smoothing specified (must be at least 0.05)")
 | 
						|
 | 
						|
    # Parse data
 | 
						|
    datas = [parse_log(fn) for fn in args]
 | 
						|
 | 
						|
    # Calibrate shaper and generate outputs
 | 
						|
    selected_shaper, shapers, calibration_data = calibrate_shaper(
 | 
						|
            datas, options.csv, options.max_smoothing)
 | 
						|
 | 
						|
    if not options.csv or options.output:
 | 
						|
        # Draw graph
 | 
						|
        setup_matplotlib(options.output is not None)
 | 
						|
 | 
						|
        fig = plot_freq_response(args, calibration_data, shapers,
 | 
						|
                                 selected_shaper, options.max_freq)
 | 
						|
 | 
						|
        # Show graph
 | 
						|
        if options.output is None:
 | 
						|
            matplotlib.pyplot.show()
 | 
						|
        else:
 | 
						|
            fig.set_size_inches(8, 6)
 | 
						|
            fig.savefig(options.output)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |