mirror of
				https://github.com/Klipper3d/klipper.git
				synced 2025-10-31 10:25:57 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			136 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			136 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Simple math helper functions
 | |
| #
 | |
| # Copyright (C) 2018  Kevin O'Connor <kevin@koconnor.net>
 | |
| #
 | |
| # This file may be distributed under the terms of the GNU GPLv3 license.
 | |
| import math, logging, multiprocessing, traceback
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Coordinate descent
 | |
| ######################################################################
 | |
| 
 | |
| # Helper code that implements coordinate descent
 | |
| def coordinate_descent(adj_params, params, error_func):
 | |
|     # Define potential changes
 | |
|     params = dict(params)
 | |
|     dp = {param_name: 1. for param_name in adj_params}
 | |
|     # Calculate the error
 | |
|     best_err = error_func(params)
 | |
|     logging.info("Coordinate descent initial error: %s", best_err)
 | |
| 
 | |
|     threshold = 0.00001
 | |
|     rounds = 0
 | |
| 
 | |
|     while sum(dp.values()) > threshold and rounds < 10000:
 | |
|         rounds += 1
 | |
|         for param_name in adj_params:
 | |
|             orig = params[param_name]
 | |
|             params[param_name] = orig + dp[param_name]
 | |
|             err = error_func(params)
 | |
|             if err < best_err:
 | |
|                 # There was some improvement
 | |
|                 best_err = err
 | |
|                 dp[param_name] *= 1.1
 | |
|                 continue
 | |
|             params[param_name] = orig - dp[param_name]
 | |
|             err = error_func(params)
 | |
|             if err < best_err:
 | |
|                 # There was some improvement
 | |
|                 best_err = err
 | |
|                 dp[param_name] *= 1.1
 | |
|                 continue
 | |
|             params[param_name] = orig
 | |
|             dp[param_name] *= 0.9
 | |
|     logging.info("Coordinate descent best_err: %s  rounds: %d",
 | |
|                  best_err, rounds)
 | |
|     return params
 | |
| 
 | |
| # Helper to run the coordinate descent function in a background
 | |
| # process so that it does not block the main thread.
 | |
| def background_coordinate_descent(printer, adj_params, params, error_func):
 | |
|     parent_conn, child_conn = multiprocessing.Pipe()
 | |
|     def wrapper():
 | |
|         try:
 | |
|             res = coordinate_descent(adj_params, params, error_func)
 | |
|         except:
 | |
|             child_conn.send((True, traceback.format_exc()))
 | |
|             child_conn.close()
 | |
|             return
 | |
|         child_conn.send((False, res))
 | |
|         child_conn.close()
 | |
|     # Start a process to perform the calculation
 | |
|     calc_proc = multiprocessing.Process(target=wrapper)
 | |
|     calc_proc.daemon = True
 | |
|     calc_proc.start()
 | |
|     # Wait for the process to finish
 | |
|     reactor = printer.get_reactor()
 | |
|     gcode = printer.lookup_object("gcode")
 | |
|     eventtime = last_report_time = reactor.monotonic()
 | |
|     while calc_proc.is_alive():
 | |
|         if eventtime > last_report_time + 5.:
 | |
|             last_report_time = eventtime
 | |
|             gcode.respond_info("Working on calibration...", log=False)
 | |
|         eventtime = reactor.pause(eventtime + .1)
 | |
|     # Return results
 | |
|     is_err, res = parent_conn.recv()
 | |
|     if is_err:
 | |
|         raise Exception("Error in coordinate descent: %s" % (res,))
 | |
|     calc_proc.join()
 | |
|     parent_conn.close()
 | |
|     return res
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Trilateration
 | |
| ######################################################################
 | |
| 
 | |
| # Trilateration finds the intersection of three spheres.  See the
 | |
| # wikipedia article for the details of the algorithm.
 | |
| def trilateration(sphere_coords, radius2):
 | |
|     sphere_coord1, sphere_coord2, sphere_coord3 = sphere_coords
 | |
|     s21 = matrix_sub(sphere_coord2, sphere_coord1)
 | |
|     s31 = matrix_sub(sphere_coord3, sphere_coord1)
 | |
| 
 | |
|     d = math.sqrt(matrix_magsq(s21))
 | |
|     ex = matrix_mul(s21, 1. / d)
 | |
|     i = matrix_dot(ex, s31)
 | |
|     vect_ey = matrix_sub(s31, matrix_mul(ex, i))
 | |
|     ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
 | |
|     ez = matrix_cross(ex, ey)
 | |
|     j = matrix_dot(ey, s31)
 | |
| 
 | |
|     x = (radius2[0] - radius2[1] + d**2) / (2. * d)
 | |
|     y = (radius2[0] - radius2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
 | |
|     z = -math.sqrt(radius2[0] - x**2 - y**2)
 | |
| 
 | |
|     ex_x = matrix_mul(ex, x)
 | |
|     ey_y = matrix_mul(ey, y)
 | |
|     ez_z = matrix_mul(ez, z)
 | |
|     return matrix_add(sphere_coord1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))
 | |
| 
 | |
| 
 | |
| ######################################################################
 | |
| # Matrix helper functions for 3x1 matrices
 | |
| ######################################################################
 | |
| 
 | |
| def matrix_cross(m1, m2):
 | |
|     return [m1[1] * m2[2] - m1[2] * m2[1],
 | |
|             m1[2] * m2[0] - m1[0] * m2[2],
 | |
|             m1[0] * m2[1] - m1[1] * m2[0]]
 | |
| 
 | |
| def matrix_dot(m1, m2):
 | |
|     return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
 | |
| 
 | |
| def matrix_magsq(m1):
 | |
|     return m1[0]**2 + m1[1]**2 + m1[2]**2
 | |
| 
 | |
| def matrix_add(m1, m2):
 | |
|     return [m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2]]
 | |
| 
 | |
| def matrix_sub(m1, m2):
 | |
|     return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
 | |
| 
 | |
| def matrix_mul(m1, s):
 | |
|     return [m1[0]*s, m1[1]*s, m1[2]*s]
 |